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SUMMARY

Two modern hlgh-speed advanced counterrotatlon propeller, F7/A7 and F7/A3

were tested in the NASA Lewis Research Center's 9- by 15-Foot Anechoic Wind

Tunnel at simulated takeoff/approach conditlons of 0.2 Mach. Both rotors were

of similar diameter on the F7/A7 propeller, while the aft diameter of the FT/A3

propeller was 85 percent of the forward propeller to reduce tip vortex-aft

rotor Interaction. The two propellers were designed for similar performance.

The propellers were tested in both the baseline configuration and "installed"

configuration consisting of a simulated upstream nacelle support pylon and

fuselage section. Acoustic measurements were made with a "polar" microphone

probe which recorded sideline dlrectivltles at various azimuthal locations.

Aerodynamic measurements were also made to establish propeller operating condi-

tions. The propellers were run at Inltial blade setting angles for the base-
llne and installed configurations, and also with the blade setting angles

adjusted to achleve equal forward/aft torque ratios at angle of attack with

the pylon and fuselage slmulation in place. Data are presented for propeller

operation at 80 and 90 percent of design speed (the forward rotor design tip

speed was 238 m/sec (780 ft/sec). Both propellers were tested at the maximum

rotor-rotor spaclng of 14.99 cm (5.90 In.) based on the pitch change axis sepa-

ration. Data presented In this report are for 0° and _8_ propeller axis angle

of attack. Results are presented for the baseline, pylon-alone, and pylon and

fuselage configurations. The forward and aft rotor power coefficients and fun-
damental rotor-alone tone levels were directly controlled by propeller axis

angle of attack. The second-order rotor-alone tones were strongly influenced
by the upstream pylon wake at 80 percent speed; however, rotor-alone mechanlsms

controlled the tone levels at 90 percent speed. Rotor-rotor interaction tones

were essentially unaffected by the presence of the simulated Installation.

INTRODUCTION

Modern hlgh-performance turboprop aircraft offer the promise of consldera-

ble fuel savings while still allowing for a cruise speed approaching that of
current turbofan aircraft. Advanced counterrotation propellers may offer from

8 to lO percent additional fuel savings over slmilar single rotation propellers

at cruise conditions (ref. l). However, there Is considerable concern about

the potential nolse generated by such aircraft, which includes both in-flight

cabin noise and communlty noise durlng takeoff and landing.

Thls paper presents the acoustic results for two model counterrotatlon

propellers which were tested with a simulated installed pusher configuration.
The tests were performed in the NASA Lewis 9- by 15-Foot Anechoic Wind Tunnel.

Test results are for 0.20 axial Mach number, which Is representative of take
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off/approach operation. Sideline acoustic results are presented for both

installed and baseline configuratlons at 0° and ±8° propeller axis angle of

attack. These data are taken at circumferential locations corresponding to
"above" and "below" the installed propeller. Aerodynamic results for the two

propellers are also presented to establish the propeller operating conditions
and to lend Insight to the concurrent acoustic results.

The two test propellers (designated F7/A3 and F7/A7) both had II forward
and 9 aft blades. Baseline acoustic results for the FT/A7 propeller in the
9- by 15-Foot Wind Tunnel are presented in reference 2; correspondlng results
for the F7/A3 propeller are in reference 3. Both rotors of the F7/A7 propel-
ler were of essentially the same diameter, while the aft rotor d_ameter of the
F7/A3 propeller was 85 percent of the forward diameter to reduce interaction
tone levels resulting from the upstream rotor tip vortex interacting with the
downstream rotor (refs. 3 to 5). The F7 upstream rotor was common to both pro-
pelIers. Reference 6 presents acoustic results for these two model propellers
with a simulated installation at 0 ° propeller axis angle of attack. This
paper presents the nonzero angle-of-attack results for these two installed
propellers.

APPARATUS AND PROCEDURE

The NASA Lewis 9- by 15-Foot Anechoic Wind Tunnel is located In the low-
speed return leg of the supersonic 8- by 6-Foot Wind Tunnel. The maximum
axial airflow velocity in the tunnel _s slightly over 0.2 Mach, which provides
a takeoff/approach test environment. The tunnel acoustic treatment was modi-
fied to provide anechoic conditions down to a frequency of 250 Hz, which Is
well below the range of the fundamental tone produced by the model propellers.

Acoustic Instrumentatlon In the 9- by 15-Foot Anechoic Wind Tunnel con-

slsted of two remote-controlled acoustic probes" a "track" probe and a "polar"
probe. The probes were instrumented with 0.64 cm (0.25 in.) condenser micro-

phones. The track probe was fixed to the tunnel floor while the polar probe

was attached to the downstream propeller housing, which allowed it to move with

the propeller at nonzero angles-of-attack. Only data for the polar probe is
presented in this paper.

Figure I shows the model propeller and acoustic instrumentatlon installed

in the anechoic wind tunnel. The slmulated pusher nacelle support pylon and
fuselage section are also In place. The polar probe is seen attached to the

propeller houslng. As shown in the sketch of figure 2, the polar probe was

used to survey a cylindrical field at 61 cm (24 in.) radius from the propeller

shaft axls and approximately =45 ° from the downstream rotor plane. The clrcum-

ferentlal travel was about 240 °, being limited by interference wlth the propel-

ler support structure.

Figure 3 shows photographs of the two propellers. The A3 rotor had a

larger chord to compensate for its reduced diameter; however, its leading edge

to pitch change axis was similar to that of the A7 rotor to maintain nearly

the same rotor-rotor aerodynamic spacing (affected by blade setting angle) for

the same axial rotor-rotor spacing. Both propel]ers were tested at the "maxi-

mum" axial rotor-rotor spacing of 14.99 cm (5.90 In.). The A3 rotor was tested

at a higher blade setting angle (46.4 °) compared to that of the A7 rotor



(39.4 °) to achieve the same thrust. Reference 3 also showed that the rotor-

alone tone level for the A3 rotor was typically 7 dB lower than that for the

A7 rotor even though they were both at the same aerodynamic operating points.
This tone level difference was attributed to the lower tangential tip speed of

the A3 propeller - a consequence of operation at the same rotatlonal speed with
a smaller diameter. Table I presents design characteristics for both propel-

lers at cruise condltions.

The two propellers were operated at blade setting angles which gave siml-

far aerodynamic performance. These angles were (front rotor/aft rotor)
41.I°/39.4 ° for the F7/A7 propeller and 41.I°/46.4 ° for the FT/A3 propeller.

These blade setting angles resulted in a nearly equal forward/aft torque split

between the two rotors of each propeller in the baseline configuration, and at

0° angle of attack with the slmulated Installation in place. The propeller

blade angles were adjusted for an equal torque split at ±8 ° angle of attack
with the Installation in place to approximate operating conditions for the Gen-

eral Electric "UDF" full-scale turboprop engine. Table II presents selected

aerodynamlc parameters for the two propellers at the "takeoff" test condi-

tions. A more complete discussion of the aerodynamic performance of these

two installed propellers in the 9- by 15-Foot Wind Tunnel may be found In
reference 7.

Figure 2 also shows how the simulated pylon and fuselage was installed on

the test apparatus. Steel beams supported the fuselage and pylon from the base

of the model pedestal. The FT/A3 propeller was tested with the pylon-alone, as

well as with the pylon and fuselage configuration. The support pylon was fixed

at the "nominal" pylon-rotor spaclng which was 7.0 cm (2.8 in.) axlal spacing

between the pylon tralling edge and the forward propeller pitch change axis.
The radial distance between the inner flow surface (rotor hub) and the slmu-

fated fuselage was 23.2 cm (9.1 in.) at the forward rotor plane, and 28.9 cm

(If.4 in.) at the aft rotor plane. Thls resulted in a radial blade-tip-to-

fuselage separation of 5.1 cm (2.0 in.) for the forward rotor (F7, which was

common to both propellers). The corresponding blade tip separation for the
aft A7 rotor was ll.3 cm (4.5 in.) and 15.4 cm (6.1 in.) for the smaller-

diameter A3 rotor.

The simulated fuselage had a total length of 224 cm (88.2 in.). The maxl-
mum diameter of 63.5 cm (25.0 In.) occurred 47.2 cm (18.6 In.) downstream of

the hlghlight. The fuselage had a constant 9.24 ° taper downstream of this max-

imum diameter. The fuselage was mounted in the test Installation in such a way
that its axls of rotation was tilted downward 3.5 ° relative to the propeller

upstream axis. This resulted In the fuselage surface nearest to the propeller

having an effective 5.75 ° taper relative to the free-stream tunnel flow (and

propeller axis of rotation). Table III presents additional dimensions for the

simulated pylon and fuselage.

Both propellers were operated at the "maximum" spacing between forward

and aft rotor pitch change axis of 14.99 cm (5.90 in.). The upstream pylon
(when installed) axial distance to the forward rotor was the same for all

tests. Acoustic data were taken wlth a "polar" mlcrophone probe which was

mounted on the downstream end of the propeller housing. The polar probe assem-

bly surveyed both the angular and sideline noise fields. The unequal blade

numbers of the 11/9 configurations of the two propellers greatly simplified

the acoustic analysis of the complicated counterrotation propeller spectra.



Figure 4 is a sketch of the installed propeller in the anechoic wind tun-
ne]. The forward rotors of both propellers rotated In a clockwise direction
viewing downstream; the aft rotors rotated In a counterclockwlse direction.
The circumferential locations of the sideline dlrectivitles are referenced in

figure 4 as @ : 0°, 90°, and 180 °. The installed propeller was intended to

simulate an aircraft pusher configuration. Such an aircraft would have identl-

cal engine Installations on either side of the fuselage using the same basic

propeller. These two engines would have different directions of rotation rela-

tive to the alrp]ane fuselage. That is, while the forward rotor of the

"engine" sketched In figure 4 might rotate "inboard up," the forward rotor of

the engine mounted on the opposite side of the fuselage would then rotate

"inboard down." A similar relationship would exist for the aft rotors of the

two engines. Thus, sideline data for the first installed engine at ¢ = 0°

would correspond to Installed data for the second engine at @ = 180°.

The Installed configuration introduces a number of possible noise genera-

tion mechanisms in addition to rotor-rotor interaction tones and asymmetrical

rotor-alone circumferential noise flelds resulting from angle-of-attack opera-

tion (refs. 2 and 3). As shown In the cross-sectlon sketch of figure 5, the

upstream pylon wake could easily interact with the propellers to generate

pylon-rotor Interactlon tones at nBPFf and mBPF a, where n and m are
integers. The simulated fuselage was much too short to generate boundary layer

_thIcknesses comparable to those of an actual fuselage. However, the presence

of this simulation could still introduce some boundary layer interaction with
the propeller blades, and there could be other flow fields associated with this

"fuselage" as well. Reference 3 showed that there was an interaction tone

reduction associated with the reduced diameter of the A3 rotor. It is possible
that acoustic benefits of reducing the aft rotor diameter could extend to the

present study In that the A3 rotor tip is further removed from the fuselage-
induced flow disturbances as well as the F7 rotor tip vortex.

RESULTS AND DISCUSSION

All tests were performed at 0.20 tunnel Math number. Limited aerodynamic

results are presented to establish the propeller operating conditions. Acous-

tic results are presented as sldeline directlvitles, or maximum sidellne level,

at @ , 0° and 180 ° (see fig. 4). Test results are for 0° and ±8 ° propeller

axis angle of attack.

Aerodynamic Performance

Figure 6 is a propeller operating map of the total power coefficient
(based on the forward rotor annulus), PQAT, as a function of the corrected for-

ward rotor advance ratio, JfCos(_). The results in figure 6 are for 0° propel-
ler axis angle of attack. PQAT is defined as"

PQAT : total power
(p)(rev/sec) 3 (D) 3 (annulus area)

where p is the local air donsity, D is the forward propeller diameter, and

is the propeller axis angle of attack. The results are shown In figure 6

for both the baseline and pylon and fuselage configurations for each propeller.

The addition of the simulated pylon and fuselage causes essentially no change
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in the operating llne for each propeller - especlally at the higher rotational
speeds (lower J). The maximumdifference In the PQAT values for the two

propellers at a partlcular J value is on the order of 0.15, and is considered

insignificant with respect to acoustic performance.

Figure 7 is a PQAT versus corrected J operating map for the FT/A3 pro-

peller at 8° propeller axis angle of attack. Data are shown for the baseline,

pylon-alone, and pylon and fuselage configurations. The addition of the slmu-
fated installation has little effect on the overall propeller performance.

However, the presence of the pylon, in particular, has a significant effect on
the indlvldual rotor power coefficients at this 8° angle of attack as shown in

figure 8. The pylon, which moves with the propeller axis at angle of attack,
tends to locally redirect the propeller inflow, with the result that the for-

ward rotor is more highly loaded; the aft rotor more lightly loaded at positive

angles of attack. (The reverse is true at negative angles of attack.) Thls
effect is evidenced In the higher power coefficient levels for the forward

rotor (fig. 8(a)) and lower levels for the aft rotor (fig. 8(b)). Essentially

all of thls loading change is due to the pylon portion of the simulated Instal-

latlon. Although the individual rotors are strongly affected by the presence

of the Installat|on at angle of attack, the net effect on the propeller is neg-

llglble, as was shown in the previous figure.

Acoustic Performance

Acoustic results will be presented which show the effect of the simulated

installation on the propeller tone levels. Maximum sideline sound pressure

levels (SPL) for the first and second order BPFf and BPF a tones will be

shown for the @ = 0° and 180° azimuthal locatlons. Results will be presented

for the F7/A3 propeller with the pylon-alone at 80 percent design propeller

speed, and with the pylon and fuselage installation at 80 and 90 percent speed.
Results wlll also be presented for the FT/A7 propeller with the pylon and fuse-

lage installation at 80 and 90 percent speed to show the acoustic change asso-
ciated with the larger-dlameter A7 aft rotor. The interaction tone levels

(BPFf + BPFa and 2BPFf + BPF a) were essentially unaffected by the presence
of the simulated installation. Thus, in the interest of brevity, these results

wlll not be presented in this paper.

Sound pressure level spectra. - The acoustic spectra for counterrotatlon

propellers may be quite complex, consisting of both steady loading and thick-
ness rotor-alone tone harmonics for each rotor, and an array of interaction

tones. Figure 9 shows typical spectra for the F7/A7 propeller in the baseline

and pylon and fuselage configurations at the @ = 180 ° clrcumferential loca-
tion. These results are for the 61 cm (24 in.) sidellne polar probe at approx-

imately 65° from the upstream propeller axis, relative to the aft propeller

plane. Rotor-alone tones tend to show a sldellne maximum level near the rotor

plane (e = 90°), while interaction tones often show highest levels away from
this location. The various tone orders are denoted in flgure 9(a) for the
rotor-alone configuration. The first order rotor-alone tones for the forward
and aft rotoF (Bf and Ba) are clearly evident. Higher-order rotor-alone
tones are not evident in this spectra and are probably buried In the broadband.
The first Interaction tone (Bf + Ba) is quite evident, as are the higher-order
interaction tones. The corresponding results for the pylon and fuselage con-
figuration (fig. 9(b) taken at the same sideline location and propeller operat-
ing condition) show that the first order rotor-alone tone levels are increased



by the presence of the slmulated installation. However, the interaction tone

levels are essentially unaffected by this installation. Interaction tones for

the Installed propeller are of two types: Pylon-rotor interactions at nBPFF
and mBPF a, and rotor-rotor Interactions at nBPFF + mBPFa, where n and m
take on all posslble combinations of positive integer values.

The presence of the upstream pylon tends to locally redirect the propel-
ler inflow at nonzero propeller axis angle of attack with the result of Ioad-

Ing the forward rotor and unloading the aft rotor at positive angles of attack
(see fig. 8). At negative angles of attack the effect is reversed, with the

forward rotor having lower loading and the aft rotor having higher loading.
Rotor-alone tone is propagated normal to the advancing rotor blade, and an

Increase in tone level may be expected when the blade loading is increased,

and vise versa. Figure 10 shows "expected" changes in the rotor-alone tone

level at the ¢ = 0° and 180° positions as a function of propeller axis angle

of attack. Cyclical blade loading changes associated with operation at 8°

angle of attack wl11, for example, decrease the tone level at ¢ - 0 ° and

increase the tone level at @ : 180 ° (refs. 2 and 3). Pylon-lnduced loading

changes will be additive to angle-of-attack induced tone level changes, with
observation of these effects expected at a clrcumferentlal location normal to

the advancing rotor blade. Thus, pylon effects on the forward rotor should be

manifest in tone levels at the ¢ = 0°; pylon effects on the aft rotor should

°yield acoustic level changes at ¢ : 180 °.

Most of the followlng acoustic analysis w111 be presented In terms of

maximum sldellne tone level in a format slmilar to that of figure 10, and the

trends indicated In this figure are useful for interpretating the acoustic

results. Using this format (rather than presenting raw tone SPL directlvlty

curves) provides a more "global" viewpoint of the data to facilltate Its
analysis.

The presence of the simulated fuselage has been shown to significantly
affect the flrst-order rotor-alone tone levels. Aeroacoustic effects include

rotor tip interaction wlth the fuselage boundary layer and possible free-

stream velocity changes associated with the fuselage blockage. Additionally,
the fuselage (and support pylon) could be a source for acoustic reflections.

In particular, there seems to be a local flow disturbance associated with the

fuselage which manifests Itself as a tone level increase normal to the advanc-

ing rotor blade as observed previously in the 0° angle-of-attack results for

the installed propellers (ref. 6). A tone level decrease relative to the

unlnstalled case (reason unknown) was often observed at 180° to the region of
increase.

The flrst-order rotor-alone tones typically show a broad region of

increased level near the 90° circumferential posltlon. It is possible that
thls tone increase Is related to acoustic reflections from the installation.

This phenomenon appears to be limlted to the first-order tones, suggesting

that reflectlons from the fuselage and possible "shadowlng" of the higher-order

tones by the nacelle may be a function of the tone wavelength.

Sidellne and circumferential directivities. -Flgures II and 12 are

Included to show representative tone SPL dlrectlvltles for both sideline and

circumferential polar probe surveys. Flgure II shows an example of the contin-

uous sldeIine dlrectivity data. These results are for the baseline and pylon-

alone configurations at the @ = 0° position and 8° angle of attack, and are



for the forward IBPF and 2BPF tones. Pylon flow effects tend to load the for-
ward rotor at this angle of attack. The flrst-order tone (fig. If(a)) shows a
modest level increase with the pylon in place, with most of the Increase seen
away from the rotor plane (e = 90°). However, the 2BPF tone shows a signifi-
cant increase of about 12 dB through most of the angular range. The rotor-
alone tones (IBPF and 2BPF) typically show a maximum level near the propeller
plane (90°), and the maximum tone level in this region was used for the tone
level comparisons.

The polar microphone probe could make both sideline and circumferential

directivity surveys. Figure 12 shows representative circumferential dlrectivl-

ties for the FT/A3 propeller in the baseline, pylon-alone, and pylon and fuse-

lage conflguratlons. These results were measured in the plane of the aft

propeller at 0° angle of attack with the propeller operating at 80 percent

deslgn speed. The first-order rotor-alone tone for the forward rotor

(fig. 12(a)) shows that there Is essentially no clrcumferential tone level

variation for the baseline configuration. However, the addition of the pylon

results in a tone level increase near the ¢ = 0° position. One would expect

to observe acoustlc effects of forward rotor-pylon interactlon at this clrcum-

ferential location accordlng to the expectation that noise Is radiated normal

to the advancing propeller blade. However, there Is also a reglon of tone

noise Increase In figure 12(a) for ¢ = 40° to I00 ° for the pylon-alone conflg-
uratlon. The reason for this tone level increase is not understood, and may
relate to acoustic reflections from the installation. The circumferential

directlvity in the ¢ = 150 ° to 200 ° region shows a periodic character with

angle which is suggestive of acoustic reflections. The circumferential direc-

tlvity for the pylon and fuselage configuration is similar in character to

that for the pylon-alone, but with somewhat higher level changes from base-

llne, suggestlng that additional noise is generated by the rotor tip region

interactlng with the fuselage flow field.

The circumferential dlrectlvlty results for the aft rotor (fig. 12(b)) are

essentially a "mirror image" of those for the Forward rotor. That Is, the aft

rotor Is rotating in the opposite direction relative to the forward rotor, and

the tone level increase associated with pylon-rotor interaction appears near

¢ = 1800. The other acoustic effects noted for figure 12(a) follow In similar

manner in figure 12(b).

The 2BPF forward rotor-alone tone appears to be more strongly affected by

the presence of the upstream pylon than is the Fundamental (BPF) tone. As

seen In figure 12(c), the forward rotor 2BPF tone shows a significant increase

near the ¢ = 0° position wlth the pylon in place. The addltion of the fuse-
lage results In an addit|onal tone level increase. However, the reglon of

increased tone level near @ = 90 ° observed for the flrst-order tone is not

present for the 2BPF tone. It is possible that this higher-frequency tone is

blocked by the propeller nacelle. Finally, the 2BPF tone for the aft rotor

(fig. 12(d)) shows essentially no change with the addition of the pylon and/or

fuselage, showing that pylon wake effects and/or fuselage-rotor interactions

are much less slgnificant for the A3 aft rotor.

Rotor-alone tone dlrectlvltles tend to peak near the rotor plane. Thus,

it Is reasonable to quantify tone level changes Into a more "global" overview

by observing the maximum tone level along the sideline and comparing these

values for various propeller configurations. The remalnder of the acoustic



results In this paper wlll be for the maximum sldellne tone levels at the

@ - 0° and 180° circumferential positions as a function of propeller axis
angle of attack.

F7/A3 propeller with pylon-alone configuration. - The pylon-alone configu-
ration was only tested with the FT/A3 propeller, and blade stress considera-

tlons limited the nonzero angle-of-attack data to 80 percent design propeller
speed. Aerodynamic interaction of the pylon wake with the propeller was

expected to be a major contributor to the installed propeller noise. (Refer

to fig. 8 In which the presence of the pylon-alone had a major Influence on the

Indlvldual rotor power coefficients at angle of attack.) References 8 to lO

present results for other model counterrotation propellers which were tested

with upstream slmulated support pylons and at O: propeller axis angle of

attack. A relatively lowly-loaded model propeller was tested with an upstream

pylon (refs. 8 and 9) which showed tone increases up to 7 dB with the pylon in

place. However, another more highly-loaded advanced propeller (more typical

of those of the present study) showed only an average of I EPNDB (within data

scatter) increase with an upstream pylon in place (ref. lO), suggesting that

the acoustic effect of the upstream pylon may decrease with increased propel-
ler loading. The reader should note that the "pylon-alone" was mounted on a

support structure and dld not benefit from the flow constraints of fuselage

surface boundary at the propeller tlp region. That is, there exists the possl-

bility of nontypical pylon flow effects near the lower end of the pylon which

could affect the resulting pylon-rotor noise generation. The results for the

forward and aft rotor power coefficients versus advance ratio (fig. 8) which

show essentlally no difference for the pylon-alone and pylon and fuselage con-

figurations tend to mlnlmlze concerns that the pylon-alone airflow is atyplca1.

Figure 13 shows the maximum BPF tone level for the FT/A3 forward rotor

observed along the 61 cm (24 in.) sidellne at the @ = 0° and 180° clrcumferen-

tial positions. This figure clearly shows that loading changes associated with

nonzero angle-of-attack operation are the contro111ng mechanism for changes In

this rotor-alone tone level. Small addltional tone level changes (2 dB or
less) were observed wlth the addition of the simulated support pylon.

Corresponding results for the maximum aft rotor sldeline BPF tone level

are shown In figure 14. Somewhat surprlslngly, the aft rotor is significantly

more sensitive to the presence of the upstream pylon than was the forward

rotor, showing up to 5 dB level changes with the pylon In place. These tone

level changes are consistent with the predicted changes outllned in figure 10.

For example, local flow changes induced by the pylon at _ ffi-8° were expected

to somewhat load the aft rotor, with a tone level increase expected at the 180 °
azlmuthal location.

The 2BPF tone for the forward rotor Is quite sensitive to the presence

of the upstream support pylon (fig. 15(a)), showing up to a 12 dB increase
with the pylon in place at _ = 8° and 0° azlmuthal posltlon. A tone level

increase of about 8 dB was seen at 0 and -8 ° angle-of-attack operation.

Smaller 2BPF increases were observed for the forward rotor at the @ : 180°

position (flg. 15(b)). The controlling mechanlsm for pylon-rotor interactlon

for the 2BPF tone appears to be wake interaction rather than pylon-induced

local loading effects. Although significant, 2BPF tone level changes with

for the baseline configuration at nonzero angle of attack are not as great as

were those for the BPF tone (fig. 13). Note that 2BPF tone levels, even with



the pylon in place, are generally I0 to 20 dB lower than flrst-order tones,
and therefore are not very significant In determining overall propeller noise
levels.

The 2BPFtone levels for the aft rotor are less sensitive to the presence
of the upstream pylon, Indicating that pylon-rotor interaction Is less signifi-

cant for the aft rotor (fig. 16). Tone level changes which do occur for the

aft rotor may relate more to pylon wake effects than to pylon-induced loadlng

changes. In particular, at @ = 180° and _ = 8° (fig. 16(b)), the aft rotor

2BPF tone shows about a 4 dB increase with the pylon in place. If the tone

level were controlled by pylon loading changes at angle of attack one would

expect the aft rotor 2BPF tone to show a decrease with the pylon in place (see

fig. lO(b)). The corresponding fundamental aft rotor-alone tone (fig. 14(b))
did indeed show a small level decrease at this location.

Installed F7/A3 propeller at 80 percent design speed. - While It was not

possible to slmulate a fuselage of sufficient size to have well-developed

boundary layers, etc., the fuselage simulation of the present study did pro-

vide results suggestive of a full-scale Installation. Flow disturbances from

the fuselage would most likely affect the tip region of the propeller. The A3
aft rotor, with its smaller diameter, should be less sensitive to these distur-

bances than is the larger A7 aft rotor. Reference 6, which presented installed

results for this propeller at 0° angle of attack, showed that a BPF tone

increase Is often observed normal to the advancing rotor as It passed closest

to the simulated fuselage, suggesting local changes in blade loading. A corre-
spondlng tone decrease was often observed clrcumferentially 180 ° from this

location, and the reason for this observation remains unexplained.

The baseline, pylon-alone, and pylon and fuselage configurations were run

wlth fixed blade setting angles, which, for F7/A3, were 41.I°/46.4 ° for the
forward/aft rotors (see table II). This resulted in changes in the forward/aft

rotor torque ratlos and power coefficient ratios with propeller axis angle of

attack due to localized inflow changes induced by the support pylon. This

acoustic study was part of a research program related to the General Electrlc

UDF engine, which uses two free-turblne drives to power the rotors. With this

deslgn the full-scale englne blade pitch is controlled such that the rotors

always have an essentially equal torque split. Thus, it was of interest to
explore the acoustic effects of adjusting the propeller blade setting angles

for equal torque split at ±8 ° angle of attack, and these data are also included

on the following flgures.

Figures 17 to 20 show the acoustic effect of adding the simulated fuselage

to the upstream pylon, with these data added to the flgures of the previous,

pylon-alone section (figs. 13 to 16). The triangle symbols are for the

installed propeller with blade setting angles adjusted for an equal forward/aft

torque split.

The maximum sideline BPF levels for the forward rotor (fig. 17) show that

the presence of the fuselage tended to increase the tone levels compared to

those for the pylon-alone. The @ = 0° sideline Is normal to the approachlng

blade when it is closest to the slmulated fuselage (fig. 17(a)) with local

blade loading-induced noise radiating toward that position. The results of

figure 17(a) follow the predictions of figure lO, with tone level decreases at

- -8 °, and increases at m = 8°. However, the same rotor is "retreatlng"
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relative to the @= 180° sidellne (fig. 17(b)). The results at the 180° side-

line tend to support the 0° angle-of-attack results of reference 6. That is,

a noise reduction was often observed at a circumferential 1ocatlon 180 ° away

From the previously descrlbed region of tone level increase. Such Is the case

for the _ = 0° and 8° data in figure 17(b). However, at _ : -8 ° there is a

slgnlflcant tone level Increase at the 180° sldellne with the fuselage In
place. The pylon would locally unload the forward rotor at _ = -8 °, so this

result suggests that a mechanism other than local pylon loading is controlling
thls tone level.

Operation with the baseline blade setting angles (41.1°/46.4 °) at
= -8° results In a 0.828 forward/aft torque ratio wlth the pylon-alone; a

0.810 torque ratio with the pylon and fuselage (Table II). At _ = 8° the

torque ratios become 1.20l and 1.280, respectively. Thus, aerodynamlcally,
the addition of the fuselage increases the rotor 1oadlng mismatch over that

which was observed for the pylon-alone. The acoustic results of figure 17

also show that changes In blade loading with the pylon and fuselage relate

directly to changes in tone level. For example, at ¢ = O: and _ = 8°

(flg. 17(a)), the forward rotor power coefficient Is reduced by equallzlng the

rotor torques, with a corresponding reduction In the BPF tone level.

First-order tone results for the aft rotor with pylon and fuselage
°(fig. 18) tend to follow the same pattern as was observed for the forward

rotor, Including tone level changes caused by equalizing the forward/aft torque

ratio. At ¢ = 0° and _ = 8° the aft rotor power coefficient is increased by
this equal torque ratio, wlth a corresponding increase in the BPF tone level

(which, in this case, brings the installed tone level to essentlally the base-

llne level). Equalizing the rotor torques can further Increase the

_nstallation-induced tone levels, as seen for the ¢ = 180° and _ = -8 ° case
in figure 18(b).

The addition of the fuselage to the simulated Installatlon had essentially

no effect on the 2BPF tone level (with basellne blade setting angles)(flgs. 19

and 20). In some instances, equallzlng the torque ratio produced a tone level

change similar to that observed for the BPF tone (in partlcular, see fig. 19(b)
for _ = 8°).

Installed F?/A3 propeller at 90 percent desig n speed. - Tone generation

mechanisms are frequently more effective at higher propeller speeds. Fig-

ures 21 to 24 present maxlmum sideline tone level results for the F7/A3 propel-

ler corresponding to the 80 percent results of figures 17 to 20. Limited data

are available at 90 percent speed for the installed propeller due to blade
stress limitations. In some instances, installed data are only available for

the equal torque ratlo at angle of attack due to this blade stress considera-

tion. As expected, baseline tone levels are considerably higher at thls higher

propeller speed.

The response of the BPF tone with the Installation in place is slmilar to

that observed at 80 percent speed, but with slightly larger variations from the

baseline levels (figs. 21 and 22). However, the response of the forward rotor

2BPF tone to the installation (fig. 23) is much less than what was observed at

80 percent speed. At 80 percent speed the data strongly supported the concept

of pylon wake-forward rotor Interactlon being a strong noise generation mechan-

Ism. However, at 90 percent speed (as evldenced by the equal torque blade set-

ting angle data) this wake is of little significance and is apparently masked
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by the higher overall noise level associated with hlgher speed operation. The
2BPF tone response of the aft rotor with the slmulation in place (fig. 24) was
similar to the 80 percent speed results.

Installed F71A7 propeller at 80 percent design speed. - The F7/A7 propel-

ler featured a common forward rotor with the FT/A3 propeller, and an aft rotor

designed for slmilar aerodynamic performance, but with a larger diameter (see

table I). The A3 aft rotor was originally designed to investigate acoustic

benefits of reducing aft rotor Interaction with the forward rotor tip vortex,

and thereby reducing baseline interaction tone levels (refs. 3 to 5). The A3
rotor was shown to have about a 7 dB lower baseline BPF level due to its lower

tip speed when operated at the same rotational speed as was the A7 rotor. An

additional potential benefit of the A3 rotor would be reduced interaction with

fuselage-lnduced flow disturbances (see fig. 5). Thus the following presenta-

tion for the installed F?/A7 propeller would be expected to show similar for-

ward rotor acoustic performance to that for the FT/A3 propeller (F7 in each

case was run wlth a 41.1 ° blade setting angle). However, tone levels for the

A7 rotor arlslng from tip region interaction with installation disturbances

would be expected to be somewhat higher than those observed for the A3 rotor.

The F7/A7 propeller was only tested In the baseline and pylon and fuselage
configurations.

The maximum BPF tone levels for the forward rotor (fig. 25) are essen-
tlally identical to those for the F7 rotor in the F7/A3 propeller, as was

expected. However, BPF results for the aft rotor show that the larger diame-

ter A7 rotor is more affected by the presence of the installation (fig. 26)

than is the reduced-diameter A3 rotor. In particular, results for the ¢ = 180 °

sideline, which Is the azimuthal 1ocatlon normal to the advancing A7 rotor in

the region of the Installatlon, show a slightly greater tone level Increase

with the |nstallatlon in place compared to that for the A3 rotor (fig. 18).

At _ = -8 °, the Installed A7 rotor with baseline blade setting angle showed a

132 dB BPF tone level; compared to the corresponding 123 dB level for the A3

rotor. About 7 dB of thls difference Is attributable to the lower tlp speed

of the A3 rotor leaving a net 2 dB tone level increase for the A7 rotor. (Both

rotors had essentially the same design rotatlonal speed.)

The 2BPF response of the forward F7 rotor in the FT/A7 propeller and

Installation in place (fig. 27) Is essentially the same as that for the F7
rotor in the F7/A3 propeller. However, the baseline 2BPF tone levels for the
F7 rotor in the F7/A7 propeller are somewhat hlgher than in the F7/A3 propel-
ler - the reason for thls tone level difference for the same rotor operating
with two propellers may relate to a different potential flow field near the F7
tlp region for different dlameter aft rotors.

The 2BPF response of the aft A7 rotor with the installation in place

(fig. 28) shows somewhat higher levels than for the corresponding A3 rotor

(fig. 20). Agaln, there is evidence that the larger diameter A7 rotor Is

interacting with the fuselage flow as shown by the higher installed tone levels

at _ = 0° and 8° at the 1800 sidellne location, which is normal to the advanc-

ing aft rotor in the region of the installation.

Installed FT/A7 propeller at 90 percent design speed. - The fundamental
rotor-alone tone response of the F7 forward rotor in the F7/A7 propeller

(fig. 29) is essentially similar to that for the same propeller in the F7/A3
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propeller. However, the change in BPFtone level for the aft A7 rotor
(fig. 30) with the Installation in place (relative to baseline levels) is some-

what greater than what was observed for the A3 rotor (fig. 22) again showing
that the A7 rotor Is interacting with installation flow disturbances, with thls

Interaction taking on greater slgniflcance at hlgher rotational speeds.

Although baseline 2BPF levels for the F7 rotor In both propellers Is

about the same (fig. 31), thls rotor appears to be somewhat more sensitive to

the presence of the installation when In the F7/A? configuration (compare to

flg. 23). Thls suggests that the response of the forward F7 rotor to the

Installation may be Influenced to some degree by the flow field of the aft
rotor.

The baseline 2BPF response of the aft rotor (fig. 32) shows an increase

relative to the corresponding A3 results (fig. 24) which is typical of the

increased tone level expected from relative tip speed consideratlons. Also,
the tone level response for the larger-diameter A7 rotor indicates that the

rotor tlp region is more likely to interact with the fuselage airflow
disturbances.

SUMMARY OF RESULTS

Two advanced counterrotation propellers were acoustically tested in the

NASA Lewis 9- by 15-Foot Anechoic Wind Tunnel at simulated takeoff/landing

conditions of 0.20 Mach. The propellers were tested in the baseline configura-

tlon, and with a simulated installed pusher configuration conslsting of a sup-

port pylon and fuselage. The propellers were tested over a range of rotational
speeds and propeller axls angles of attack. Data were taken with the Initial

blade pitch angles, and with the pitch angles adjusted for equal forward/aft

torque splits at the ±8° angles of attack. Acoustic data were taken with a

polar microphone probe which was attached to the downstream propeller housing

and could survey sideline directivltles at several azimuthal locations. The

following significant results were observed in this study:

I. Individual power coefficients for the forward and aft rotors were

strongly controlled by the propeller axis angle of attack with the simulated

support pylon in place. The addition of the simulated fuselage had a minimal

change on the these power coefficients. However, the overall power coefficient

was essentlally independent of angle of attack.

2. The first-order rotor-alone tones for the pylon-alone configuration

with the F7/A3 propeller showed changes up to 4 dB at ±8 ° angle of attack.

These changes were directly related to pylon-lnduced loading changes on the
rotors.

3. The forward rotor 2BPF tone level for all test angles-of-attack at

80 percent deslgn propeller speed was up to 12 dB higher than basellne levels.

Smaller increases were noted for the aft 2BPF tone. This suggests that pylon

wake-rotor Interactlon is a significant mechanlsm for the 2BPF tone.

4. Introduction of the fuselage to the simulated installation tended to
increase the BPF tone level variations from baseline relative to those observed

for the pylon-alone configuration, suggesting that local blade loading from

fuselage flow disturbances can significantly influence these tone levels.
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5. Fundamental rotor-alone tone levels with the pylon and fuselage in
place tend to directly follow blade loading as evidenced by the fact that tone
level changes followed changes in the blade pitch angles.

6. The 2BPF tone level, which is thought to be controlled by pylon wake-

rotor |nteractlon was much less sensitive to the presence of the installation

at 90 percent design speed than at 80 percent speed due to masking effects of
rotor-alone thickness noise.

7. Use of a smaller-diameter aft rotor may reduce rotor tip interaction

w|th the installation flow field, giving a lower fundamental rotor-alone tone
level at some azimuthal locations. This acoust|c benefit is comblned with

baseline rotor-alone tone reductions which are typical of the lower tip speed
of the smaller-diameter rotor.
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TABLE I. - PROPELLER DESIGN CHARACTERITISTICS

[Cruise conditions.]

F7/A7 Propeller

Number of blades a ......................... II/9

Design cruise Mach number ..................... 0.72

Nominal diameter, cm (in.) ........... 62.2(24.5)/60.7(23.9)

Nominal design cruise tip speed, m/sec (ft/sec) ........ 238(780)

Nominal design advance ratio ................... 2.82

Hub-to-tip ratio ......................... 0.42

Geometric tip sweep, deg .................... 34/3]

Activity factor ........................ 150/150

Design power coefficient based on annulus area ........... 4.16

F7/A3 Propeller

Number of blades .......................... l]/g

Design cruise Math number ..................... 0.72

Nominal diameter, cm (in.) ............ 62.2(24.5)/53.1(20.9)

Nominal design cruise tip speed, m/sec (ft/sec) .... 238(780)/203(665)

Nominal design advance ratio ................. 2.82/3.32

Hub-to-tip ratio ....................... 0.42/0.49

Geometric tip sweep, deg ..................... 34/22

Activity factor ........................ 150/243

Design power coefficient based on annulus area ........... 4.16

based on annulus area ...................... 4.16

aForward propeller/aft propeller.

TABLE If.- SELECTED AERODYNAMIC PARAMETERS

[Subscripts: f = Forward rotor; A = aft rotor.]

Propeller
(II/9 blades)

F71A3

!

FT/A3

1
F7/A3

t
F7/A3
F7/A3

F7/A3
F71A7

F7/A7

1
F71A7

F7/A7

F7/A7

Blade

setting angle,

_fI_A,

deg

41.1146.4

41.I146.4

1
41.I146.4

I
43.3/44.4

39.9/48.0
39.9/48.0
41.4/3g.4

41. I>39.4

1
43.8/37.5
39.9/41.3

39.9/41,3

Configuration

Baseline

Pylon alone

1
Pylon + Fuselage

l
Pylon + Fuselage

Pylon + Fuselage

Pylon + Fuselage

Baseline

Pylon +"fuselage

1
Pylon + fuselage

Pylon + fuselage

Pylon + fuselage

Percent

design

speed

80

80

80

90

90

90

BO

80

80

90

80

80

80

90

80

80

90

80

80

BO

90

90

go

80

80

80

90

80

80

90

Angle of
attack,

deg

-8

0

8

-8

0

8

-8

0

8

0

-8

0

8

O

-8

8

8

-8

0

8

-8

0

8

-8

0

8

0

-8

8

8

JFcos Power coeffiecients Torque ratio.

TflT A

PQAf PQA A PQAT

0.965 1.726 1.679 3.442

•969 1.712 1.654 3.407

.964 1.722 1.672 3.443

•860 1.804 1.866 3.711

.861 1.792 1.856 3.686

.852 1.791 1.858 3.687

.963 1.534 1.822 3.401

.968 1.708 1.671 3.416

.954 1.907 1.562 3.508

•865 1.793 1.873 3.705

.967 1.488 1.812 3.337

.968 1.709 1.643 3.391

.962 1.917 1.476 3.425

.862 1.790 1.833 3.664

.959 1.746 1.655 3.435

.963 1.701 1.653 3.390

• 859 1.770 1.850 3.659
•967 1.674 1.618 3.334

•972 1.659 1.600 3.304

•968 1.679 1.590 3.322

•864 1.755 1.738 3.536

•871 1.739 1.733 3.515

•868 1.752 1.712 3.510
•961 1.414 1.810 3.266

.974 1.629 1.623 3.288

• 965 1.853 1.464 3.351

• 868 1.721 1.751 3.514
•966 1.733 1.600 3.368

•964 1.693 1.692 3.422

•859 1.761 1.814 3.617

1.013

1.018

1.010

.953

.953

.951

.828

1.008

1.201

.944

.810

1.024

1.280

.962
1.041
1.014

.944

1.017

1.018

1.033
.993

.986
1.005

.769

.989

1.247

.968
1.068

.986

.956
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TABLE Ill. - SIMULATED INSTALLATION DIMENSIONS

[Dimensions in cm (in.).]

Pylon (Symmetrical airfoil)

Leading edge sweep, deg ..................... 28.8 °

Trailing edge sweep, deg ..................... 15.5 °

Location of maximum thickness (from leading edge), percent .... 40
Chord near nacelle ........................ 43(17)

Max. thickness near nacelle .................. 3.8(l.5)

Chord near fuselage ....................... 48(19)
Max. thickness near fuselage .................. 5.8(2.3)

Axial spacing between strut T.E. and forward rotor pitch

change axis at nacelle .................... 7.0(2.8)

Fuselage (Turned body of rotation)

Total length ........................ 224.0(88.2)
Max. diameter ......................... 63.5(25)

Highlight to max. diameter ................. 47.2(18.6)
Highlight to forward rotor pitch change axis .......... 112(44)

Taper aft of max diameter, deg ................. 9.24 °

Body axis of rotation relative to horizontal axis, deg ....... 3.5 °

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH
r

ORIGINAL PAGE IS

OF POOR QUALITY

Figure 1. - Counterrotation turboprop model in 9 x 15 anechoic wind tunnel,
shown with simulated support pylon and fuselage configuration.
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POLAR
MICROPHONE
PROBE

Figure 2. - Sketch of the turboprop model and polar microphone probe.
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BLACK AND W_H!T.E_P_HO!OGRAE-/.H

(a} F7/A7. (b) FT/A3, reduced-diameter aft propeller.

Figure 3. - Propeller configurations.
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Figure 4. - Sketch of installed propeller viewing
downstream showing directions of rotation and
circumferential angle convention for noise
measurements.
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Figure 5. - Possible noise sources for installed propeller.
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Figure 6. - Propeller operating map for F7/A7 and
F7/A3 propellers (11/9 blades, maximum rotor-rotor
spacing, o_ . 0°, M_ = 0.2).
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Figure 7. - Propeller operating map for F7/A3 propeller (11/9 blades,

maximum rotor-rotor spacing, I]'F/I3A = 41.1 °/46.4 °, o¢= +8 °. M_- 0.2).
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Figure B, - Propeller operating map for F7/A3 forward and aft rotors (11/9
blades, maximum rotor-rotor spacing, J]F/[_A= 41.1°I46.4% rL = 8e, M,,,- 0.2).
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Figure 9. - Typical sideline sound pressure level

spectra for the FT/A7 model turboprop (11/9

blades, 80% speed, 13F/_A = 41.1°f39.4 e, 61 cm
(24 in.) sideline, e = 65 °, _ = 180", M_= 0.2).
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Figure t0. - Expected tone level changes with propeller axis angle
of attack. Tone increases produced by pylon-rotor interaction
are expected at (_ - 0° for the forward rotor, and at _ = 180" for
the aft rotor.
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setting angles adjusted for equal torque split.
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Figure 14. - Maximum F7/A3 BPF A tone level along a 61 cm
(24 in.) sideline as a function of propeller axis angle of attack.

(pF/BA - 41.1°/46.4 °, 80 percent speed, M = 0.2). "Blade
setting angles adjusted for equal torque split.
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Figure 15. - Maximum F7/A3 2BPF F tone level along a 61 cm
(24 in.) sideline as a function of propeller axis angle of attack.

(_F/_A = 41.1 °/46.4°, 80 percent speed, M_= 0.2).
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Figure 16. - Maximum F7/A3 2BPF A tone level along a 61 cm
(24 in.) sideline as a function of propeller axis angle of attack.

(r_F/p,A = 4f.1°/46.4 °, 80 percent speed, M_= 0.2). "Blade
setting angles adjusted for equal torque split.
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Figure 17. - Maximum F7/A3 BPF F tone level along a 61-cm

(24 in.) sideline as a function of propeller axis angle of attack.

(_ F/_A" 41.10/46.4 °, 80 percent speed, M=, - 0.2). 'Blade
setting angles adjusted for equal torque split.
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Figure 18.- Maximum F7/A3 BPF A tone level along a 61 cm
(24 in.) sideline as a function of propeller axis angle of attack.

(_F/J]A = 41.1"/46.4 °, 80 percent speed, Moo= 0.2). "Blade
setting angles adjusted for equal torque split.

2O



w
oc:

w .

o,,',
Z_

0
[]

0
A

120 --

110 --

100

BASELINE

PYLON

PYLON AND FUSELAGE

PYLON AND FUSELAGE'

-8 0 8 -8 0 8

PROPELLER AXIS ANGLE OF ATTACK, or, deg

(a) _ = 0°. (b) _ = 180 °.

Figure 19. - Maximum F7/A3 2BPF F tone level along a 61 cm
(24 in.) sideline as a function of propeller axis angle of attack.

(_F/_'A = 4 t. 1°/46.4 °, 80 percent speed, M_ = 0.2). 'Blade
setting angles adjusted for equal torque splil.
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Figure 20. - Maximum F7/A3 2BPF A tone level along a 61 cm
(24 in.) sideline as a function of propeller axis angle of attack.

(13F/13A = 41.t°/46.4 °, 80 percent speed, M_= 0.2). " Blade
setting angles adjusted for equal torque split.
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Figure 21. - Maximum F7/A3 BPF F tone level along a 61 cm
(24 in.) sideline as a function of propeller axis angle of attack.

F/I_A = 41.1°/46.4 °, g0 percent speed, M_ = 0.2). " Blade
setting angles adjusted for equal torque split.
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Figure 22. - Maximum F7/A3 BPF A tone level along a 61 cm
(24 in.) sideline as a function of propeller axis angle of attack.

(_ F/13A = 41.1°/46.4°, 90 percent speed, M_= 0.2). ' Blade
setting angles adjusted for equal torque split.
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Figure 23. - Maximum F7/A3 2BPF F tone level along a 61 cm

(24 in.) sideline as a function of propeller axis angle of attack.

_F/I]A = 41,1°/46.4 °, 90 percent speed, M+= 0.2)+ ' Blade
setting angles adjusted for equal torque split.
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Figure 24. - Maximum FT/A3 2BPF A tone level along a 61 cm
(24 in.) sideline as a function of propeller axis angle o! attack.

(]3F _A = 4 t.1 °/46+40, 90 percent speed, M_ = 0.2)+ ' Blade
setting angles adjusted for equal torque split.
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Figure 25. - Maximum FT/A7 BPF F tone level along a 61 cm
(24 in.) sideline as a function of propeller axis angle of attack.

(_F/_A - 41.1°/3g.4 ", 80 percent speed, M_= 0.2). ' Blade
setting angles adjusted for equal torque split.
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Figure 26, - Maximum F71A7 BPF A tone level along a 61 cm
(24 in.) sideline as a function of propeller axis angle of attack.

(13F/_A = 41.1"/39.46, 80 percent speed, M_= 0.2). ° Blade
setting angles adjusted for equal torque split.
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Figure 27. - Maximum F7/A7 2BPF F tone level along a 61 cm
(24 in.) sideline as a function of propeller axis angle of attack.

0] F/_A = 41.1°/39.4 °, 80 percent speed, M_= 0.2). " Blade
selling angles adjusted for equal torque split.

120
LU
n"

(,/'_ rn

LU .

_u 110
o,>.

100
0 8

O BASELINE

O PYLON AND FUSELAGE
PYLON AND FUSELAGE"

<>

] l J
-8 0 8 -8 0 8

PROPELLER AXIS ANGLE OF AT-rACK, c¢,deg

(a), - 0°. (b) _ = 180 °.

Figure 28. - Maximum F7IA7 2BPF A tone level along a 61 cm

(24 in.) sideline as a function of propeller axis angle of attack.

(_F/_'A = 41.1°/39.4 °, g0 percent speed, M=,= 0.2). " Blade
setting angles adjusted for equal torque split.
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Figure 29. - Maximum F71A7 BPF F tone level along a 61 cm
(24 in.) sideline as a function of propeller axis angle of attack.

_F/_A, 41.t'v3g.4 °, g0 percent speed, M_- 0.2). * Blade
Setting angles adjusted for equal torque split.
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Figure 30. - Maximum F7/A7 BPF A tone level along a 61 cm

(24 in.) sideline as a function of propeller axis angle of attack.

03 F/_A = 41.1 °/39.4", g0 percent speed, M_ = 0.2). " Blade

setting angles adjusted for equal torque split.
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Figure 31. - Maximum F7/A7 2BPF F tone level along a 61 cm

(24 in.) sideline as a function of propeller axis angle of attack.

(1_F/13A = 41.1"/39,4 °, go percent speed, M_= 0.2). ' Blade

setting angles adjusted for equal torque spill.
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